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Classical reference books in mathematical biology, e.g. [7], illustrate how,
in its origins, this once emerging field essentially relied on small models, and
their thorough analysis employed a suit of advanced techniques from dynamical
systems theory. It was often feasible to pursue such analysis without fixing
the value of model parameters, thereby obtaining a full picture of the possible
behaviors of the model. In many cases, the purpose of the model was to provide
a qualitative understanding of a phenomenon, which not necessarily needed to
fit exactly with observational data.

As models have become larger and more complex, and with the increasing
availability of data, in particular in molecular biology, a standard approach
to analyze mathematical models has been to first gain some insight about
suitable parameter values, for example via estimation or extrapolating from
related species, and then employ numerical methods to simulate the models.
In this way, a precise description of the system of interest could be obtained.
A problem arises when parameters are unidentifiable, or cannot be determined
with the desired precision, or when we need to take into account that parameter
values typically fluctuate, are specific to the individual, and depend on the
environment. Then we are back to the original problem of understanding the
model in a larger region of the parameter space. As the complexity of the
models forbid detailed hands-on analyses, model inspection is often achieved
through a combination of parameter sampling and numerical simulation.

Parallel to this development, some theories have centered around systems
of ordinary differential equations that model the concentration of species in an
interaction network in time. Although these models are typically associated
with chemical and biochemical reactions, the formalism fits as well models in
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ecology, like the Lotka-Volterra model, or in epidemiology: All these have in
common that the interactions among entities drive the changes of the system.

The origin of these theories goes mainly back to the 70’ies and 80’ies, with,
to name a few, the work of Feinberg, Horn and Jackson leading to what is
known as Chemical Reaction Network Theory (CRNT) [6]; Vol’pert [8]; and
Clarke, leading to Stoichiometric Network Analysis [2]. Common to these the-
ories is the search for easy-to-apply methods concerning dynamics, by relying
on the structure of the interaction network and assumptions about the rates of
the interactions. This has lead to simple (but powerful) theorems on number
of steady states and their stability, to give some examples.

These theories are at one end of the spectrum of the level of abstraction of
mathematical models. At the left end of the spectrum we find models that are
fitted to real data and provide detailed quantitative information of a specific
system under study; and at the right end of the spectrum, we find general
theories aimed at studying classes of models that share some particularities and
their qualitative properties. Moving from left to right we go from models whose
goal is to represent reality in detail, to models seeking to identify underlying
principles. Although at first sight one might think that the left region of the
spectrum is the one that really matters in practical scenarios, a throughout
qualitative analysis of families of models can be valuable to guide experimental
design, to support conclusions of fitted models, and can be helpful in synthetic
biology. Furthermore, it is advantageous, and at the core of mathematics, to
rely on general theories when studying specific models.

Algebra and Interaction Networks

In recent years, these old theories about interaction networks from the
70’ies, mainly CRNT, have been revised and further developed under the um-
brella of computational algebra and algebraic geometry. The reason behind
this, is that models arising from interaction networks typically involve polyno-
mials and rational functions (quotients of polynomials). Prominent examples
are the mass-action assumption, yielding polynomial differential equations, or
Michaelis-Menten type kinetics, yielding models with rational functions. In
this case, the steady states of a model are the solutions to a system of poly-
nomial equations, which is the object of computational algebra and algebraic
geometry. Furthermore, computational algebra is well suited to systems with
unspecified parameters, after choosing the right coefficient field. It can for
example find relations that hold for all parameter values at steady state, or
find descriptions of the steady states by means of a simple parametrization.
However, two main drawbacks prevent these methods to stand out: the high
computational cost, and the fact that the restriction of the steady states to
positive values causes nice results from the theory of polynomial equations to
fail. For example, any real polynomial of degree n has exactly n complex roots
counted with multiplicity, but only some generic upper bounds can be given
for the number of real and positive real roots.

Progress within this area has focused on solving these challenges by ex-
ploiting the fact that the polynomials under study arise from interaction net-
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works. Through a close interplay with real algebraic geometry, this had lead
to numerous strategies to count the number of positive steady states and even
understand the parameter space in that respect [3]. More recently, similar ideas
are being applied to study stability and bifurcations, as these, via the Routh-
Hurwitz criterion, are also expressed in algebraic terms. In general, whenever
the question of interest can be reduced to understanding the solutions to a
system of polynomial equalities and inequalities, then computational algebra
might well be the right theory to call.

Integrating the whole spectrum

Mathematical biology, and applied mathematics in general, is witnessing
how theory traditionally belonging to the realm of pure mathematics is finding
its place in the study of mathematical models. This certainly applies to alge-
braic geometry, but also to other disciplines like topology. Despite the broad
range of existing theories to analyze mathematical models in molecular biol-
ogy from different perspectives, the preferred choice often involves numerical
simulations combined with parameter inference or parameter sampling. This
is presumably driven by the numerous existing tools that address this end
of the spectrum, e.g. [1], while we lack proper dissemination and computa-
tional tools that cover the rest of the spectrum, and facilitate the access to
users without a suitable mathematical background. With few exceptions [4,5],
the latter is partially a consequence of the notable challenges involved with
providing easy-to-use black-box implementations of that end of the spectrum.
But without these, much of the valuable theory currently being developed to
analyze families of models at once, will remain a curiosity and its potential
use in real applications will be overlooked.

As methods, tools and theories are constantly being developed to under-
stand the overwhelmingly-complex systems of interacting elements, it would be
desirable to have integrative platforms where users, these being experimental
biologists or theoreticians, can dissect models at all possible levels.

References

1. COPASI: Biochemical System Simulator. URL http://copasi.org/
2. Clarke, B.L.: Stability of Complex Reaction Networks, Advances in Chemical Physics,

vol. 43. John Wiley & Sons, Inc., Hoboken, NJ, USA (1980)
3. Dickenstein, A.: Biochemical reaction networks: an invitation for algebraic geometers.

In: Mathematical Congress of the Americas, Contemp. Math., vol. 656, pp. 65–83. Amer.
Math. Soc., Providence, RI (2016). DOI 10.1090/conm/656/13076

4. Donnell, P., Banaji, M., Marginean, A., Pantea, C.: CoNtRol: an open source framework
for the analysis of chemical reaction networks. Bioinformatics 30(11), 1633–1634 (2014)

5. Ellison, P., Feinberg, M., Ji, H., Knight, D.: Chemical reaction network toolbox, version
2.2. Available online at http://www.crnt.osu.edu/CRNTWin (2012)

6. Feinberg, M.: Foundations of Chemical Reaction Network Theory, Applied Mathematical
Sciences, vol. 202. Springer International Publishing (2019). DOI 10.1007/978-3-030-
03858-8

7. Murray, J.D.: Mathematical Biology: I. An introduction, Interdisciplinary Applied Math-
ematics, vol. 17, third edn. Springer (2002)

8. Vol’pert, A.I., Hudjaev, S.I.: Analysis in classes of discontinuous functions and equations
of mathematical physics, Mechanics: Analysis, vol. 8. Springer Netherlands (1985)


